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Coevolutionary networks with homophily and heterophily
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We have investigated a simple coevolutionary network model incorporating three processes—changes of
opinions, homophily, and heterophily. In this model, each node holds one of G opinions and changes its
opinion, as in the voter model. Homophily is the tendency for connections to form between individuals of the
same opinions and heterophily is the opposite effect. If there is no heterophily, this model corresponds to the
Holme and Newman model [Phys. Rev. E 74, 056108 (2006)]. We show that the behavior of this model
without heterophily can be understood in terms of a mean field approximation. We also find that this model
with heterophily exhibits topologically complicated behaviors such as the small-world property.
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I. INTRODUCTION

In this decade, our knowledge of the structure of interac-
tion in diverse areas, such as social, biological, or technical
systems, has developed enormously [1-4]. These complex
networks have common features, despite the diversity of
context in respective areas, and many models have been pro-
posed to reconstruct these features [5-12]. On the other
hand, the dynamics on these complex networks has been
investigated energetically and reported as these dynamics are
essentially different from that on random or regular networks
[13-22]

In real networks, however, the links or connections be-
tween individuals are dynamic entities rather than static
ones, and often interplay with the dynamics of individuals.
For example, in social networks, it seems that each indi-
vidual attempts to make a new connection to get a new job,
information, and so on, while friction breaks existing con-
nections. On these dynamic structures, social interactions
such as opinion formation occur. In the biological context,
neural networks are typical adaptive networks which opti-
mize their structure under the influence of neuronal activi-
ties. Of course, these structural changes affect the dynamics
of individuals strongly. Thus, the coevolution of individuals
and connections is one of the interesting and important top-
ics. Several authors have investigated models incorporating
coevolution and found nontrivial behaviors [23-30].

Recently, Holme and Newman have discussed opinion
formation in the real world as a result of combination of two
processes—one makes individuals change their opinions due
to the influence of their acquaintances, and the other makes
connections form between individuals of similar opinions,
namely, homophily [25]. They proposed a simple coevolu-
tionary network model incorporating these two processes and
found that their model exhibits a nonequilibrium phase tran-
sition despite its simplicity. We regard their model as being
simple and fundamental enough to understand coevolution-
ary networks.

However, as well as these two processes, we believe that
heterophily is also crucial for opinion formation. In contrast
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to homophily, heterophily is the tendency for connections to
be formed between individuals of different opinions. It is
known that optimal heterophily enhances the smooth com-
munication among social networks [31-33]. The concept of
weak ties proposed by Granovetter can be considered as an
example of heterophily, which has a significant role in mak-
ing a bridge between communities [34]. If there is no hetero-
philious communication, the networks are divided into iso-
lated groups, so that heterophily is a fundamental process in
social networks.

In this paper, therefore, we propose a coevolutionary net-
work model incorporating these three processes, namely,
changes of opinions, homophily, and heterophily, and ana-
lyze the asymptotic properties of the model.

II. THE MODEL AND ITS PAIRWISE APPROXIMATION

Let us consider a network that consists of N nodes and K
links. Each node holds one of G opinions. We assume that
the initial topology of the network is a random graph and the

mean degree k=2K/N is greater than 1. The individuals and
connections coevolve as follows.

We choose a node i randomly at each time step. If node i
is isolated, we do nothing. Otherwise, we choose a neighbor
J of node i randomly, and (1) with probability ¢ reattach the
link between node i and j to a randomly chosen node holding
same opinion with node i; or (2) with probability ¢ reattach
the link to a node holding a different opinion from node i; or
(3) with probability 1—¢—t node i adopts the opinion of
node j.

Process 1 represents connection formation between hold-
ers of the same opinion, namely, homophily, and process 2
represents heterophily. These two processes make the net-
work topology evolve. Process 3 alters the opinions of nodes
due to the influence of their neighbors as in the voter model.
If there is no heterophily, =0, this model is identical to the
Holme and Newman model [25].

To investigate the dynamics of the present model, we con-
sider the simplest case in this model, namely, G=2, at first.
We here apply a pairwise approximation to this model
[27,35]. We describe the process of this model as the time
evolution of the number of various types of connected pairs
and the number of opinion holders,
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BAAL_ (b, [ABY+ 2Py J[ABA]- Py AAB)
X(1=¢— ) + Ps_p[ABlp— P4_4[AA]Y, (1)
UBEL_ (b, ABY+ 2P, i[BAB] - Py, [ABB)
X(1= =)+ Py _J[ABlp— Py _4[BBlY. ()
dA] [ [AB] [45]
dr ([AB] T TIATTIE 2[AA][A]>(1 —e-9),
)

where [X] is the number of nodes holding opinion X, [XY]
the number of X-Y links, and [XYZ] the number of X-Y-Z
triplets (the central Y has X-Y and Y-Z links) with respective
states X,Y,ZE[A,B], and A and B are the opinions each
node can hold. Py .,y denotes the probability that a node X
chooses one of its neighbors ¥ (X #Y),

[X]

> [(xw]+2[xx]
W#X

(4)

Px_y=

which corresponds to the mean degree of the node holding
opinion X. In the right-hand sides of Egs. (1) and (2), the first
term represents the effect of process 3 (voterlike opinion
change), the second term the increase of the number of links
due to process 1 (homophilious rewiring), and the third term
with i the decrease due to process 2 (heterophilious rewir-
ing). The factor 2 before term [ABA] implies that in the
triplet A-B-A A has two A-B links and therefore the influence
of [ABA] should be doubled. We approximate the number of
triplets as [XYX]=[XY]?/2[Y] and [XXY]=2[XX]|[XY]/[X],
where we suppose that triplets are formed from two indepen-
dent links. The numbers of nodes and links are preserved,
ie., N=[A]+[B] and K=[AA]+[BB]+[AB]; thus Egs.
(1)—(3) are closed.

III. PHASE TRANSITION IN THE CASE
WITHOUT HETEROPHILY

The behavior of this model significantly depends
on . Without heterophily, i.e., =0, due to process 1
(homophilious rewiring) and process 3 (voterlike opinion
change), this system reaches a state consisting of a set of
connected components in which all members hold the same
opinion. As Holme and Newman (HN) have already reported
in Ref. [25], this model exhibits a nonequilibrium phase tran-
sition from a regime in which almost all nodes have the same
opinion to one in which the network splits into some groups
having different opinions, by changing the parameter .
However, the mechanism of this phase transition has not yet
been revealed.

Figure 1 shows the size of the largest connected subnet-
work for G=2. As the network size N increases, we can
observe a steeper slope clearly at the emergence of a large
cluster. This might suggest a critical behavior as found in the
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FIG. 1. (Color online) Size of the largest component. N is the
number of nodes, and S the size of the largest component. G=2,
k=4. S/N=1 for small ¢ implies that almost all nodes have the
same opinion, while the network splits into two large groups for
large ¢, i.e., S/N=0.5.

original HN model where G is kept proportional to N, even
in the case that G is fixed. However, to examine the
asymptotic behavior, we need to carry out a systematic
finite-size scaling for larger system size. Unfortunately, due
to the limitations of computational resources, we were not
able to prepare such data in the present study. Below we
discuss the critical behavior in terms of a mean field ap-
proach, which suggests again the existence of a phase tran-
sition.

Using Egs. (1)—(3) for =0, we rewrite these equations
by substituting the following variables: u=([AA]+[BB])/K,
v=([AA]-[BB])/K, and w=([A]-[B])/N,

i—?:%lll::z[l—vw+ y(1 =2u+v?)], (5)
dv N I-u
Z:]-{(I—Z(ﬁ)l_vz(v_w)’ (6)
d 1-
d—v:=2(1—¢)1_:2(v—w), (7

where y=2K(1-¢)/N and O0=u=<1, —-1=v=1, -1=w
= 1. The variable u stands for the fraction of no “conflicting”
links, namely, neighboring nodes holding the same opinion,
and w stands for “magnetization,” when opinion-A holders
are regarded as +1 spins and B as —1. These equations have
sets of fixed points on

TR

u=1, )

respectively. The set of fixed points (8) corresponds to the
state where P,_,z=Pp_.,, namely, the transition probabilities
of both opinions are equal. Equation (9) corresponds to
[AB]=0, where the network reaches an “absorbing” state.
The eigenvalues at the set of fixed points (8) are

016103-2



COEVOLUTIONARY NETWORKS WITH HOMOPHILY AND ...

p
0,
N =
Aod Tx7TDED
1 N - =
\(1—;)<5{(1—2¢)—(1—¢)>>0 (y=1),
(10)
and, for (9),
0,
— O’
AR
—}l_vz[l—vw+)/(vz—1)]%0 (y=1).
(11)

Figure 2 shows a schematic view of sets of fixed points and
flows.

For y>1, Eq. (8) represents a one-dimensional attractor
which has one neutral mode in the tangential direction of the
curve. Considering the fluctuation due to random sampling
of nodes, we can regard the dynamics on the attractor as a
random walk under the constraint given by (8) with an ab-
sorbing boundary condition at #=1. On the other set of fixed
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FIG. 2. (Color online) Schematic view of sets of fixed points of
Egs. (5)—(7) for y>1 (upper) and y<1 (lower). The solid line
represents Eq. (8) and dashed line Eq. (9). The arrow indicates the
flow.
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FIG. 3. (Color online) Phase diagram of final state for ¢ and
k from numerical simulations. N= 1000, G=2, and the number
of holders of each opinion is N/2 at the initial state. Filled
circles indicate that the size of the largest component at the end
of the simulation is greater than 0.9N, and open triangles less
than 0.9N. Solid line shows y=1 [k=1/(1-¢)] and dashed line

k=\3/(1-¢).

points, one can find that v,w— *=1 when u— 1; thus, all
nodes have same opinion whenever y> 1.

To the contrary, for y<<1, the set of fixed points (8) dis-
appears within the meaningful range of u, i.e., 0=u=1. The
numerical solution with the initial condition #=0.5, v
=dév, w=éw (dv,éw<1), where both opinion holders oc-
cupy about half of all nodes initially, indicates that u con-
verges to 1 while v and w do not change their values signifi-
cantly. As a result, the network finally splits into two
components; one consisting of opinion-A holders and the
other consisting of opinion-B holders, for y<1.

Therefore, the location of the sets of fixed points in the
phase space determines the asymptotic behavior of this sys-
tem. The behavior of this system abruptly changes from the
voterlike stochastic process on the attracting set with a neu-
tral mode to a simple relaxation process to the attractor (9).

Figure 3 shows the phase diagram of the final state for ¢

and the mean degree k. The solid line in Fig. 3 represents the

condition y=1 (%:ﬁ) where the disappearance of the
parabolic attractor (8) occurs. A calculation incorporating
higher-order structures rather than the pairwise approxima-
tion improves the accuracy for the phase boundary. Consid-

ering the time evolution of the number of triplets [XYZ], one

can estimate the boundary of phase as k= %1) (dashed line in

Fig. 3; see Appendix A for the derivation). As can be seen,
the phase boundary obtained from numerical simulations
agrees with the theory.

One can generalize the same argument for the case G
>2. The pairwise approximation predicts that the phase
boundary is given by E:ﬁ for G>2 as well as G=2 (see
Appendix B for the derivation). We expect that the behavior
of the system with G>2 is basically identical to the case
G=2. In fact, it seems that the value of G does not affect
significantly the critical value ¢, in numerical simulations
[25]. The equations obtained from the pairwise approxima-
tion have also trivial fixed points in the subspace with
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[XY]=0 for every X+ Y, where X and Y take one of the G
opinions. These fixed points correspond to the state with no
conflicting pairs, i.e., the final state of this model. Although
the stability of these fixed points has not been examined for
general G in the present study, at least for G=2 all eigenval-
ues become zero at the transition point y=1. Thus, we may
conclude that this neutrality causes a power law size distri-
bution near the critical point as claimed in Ref. [25].

PHYSICAL REVIEW E 78, 016103 (2008)

IV. DYNAMICAL EQUILIBRIUM IN THE CASE
WITH HETEROPHILY

For >0, the network is not divided into isolated groups
since the connections between different opinion groups arise
from process 2 (heterophilious rewiring). In the case G=2,
Egs. (1)-(3) have a stable fixed point at u=u,, v=w=0,
where

351 = g— )+ 1= L= [k = p= )+ Ly— 1|+ 4kp1 = - p®

<
<)
Il

(12)

41 - -9

thus the coexistence of two states is stable. Indeed, we
find by numerical simulation that the network does not con-
verge to one opinion. Figure 4 shows the time-averaged
value of u for different . As can be seen, Eq. (12) captures
the trend well. Therefore, for even very small ¢, the hetero-
philious rewiring drastically changes the asymptotic behav-
ior of the present model from that of Holme and Newman
model.

Furthermore, the network exhibits the small-world prop-
erty within a certain regime of parameters ¢, in the case
GxN. Figure 5 shows the time development of L/L; and
C/Cy, where L is the average path length and C the average
clustering coefficient of this model with G=0.05N, ¢=0.7,
#=0.15, and L, and C, of the random graph, respectively.
We can find L/Ly=1 and C/Cy>1 for each N so that the
network shows the small-world property. We assumed the
scaling form N’x/x,=f(N“) where x=L,C, and roughly es-
timated a=-1.5, b=-0.015 for L, a=-1.5, b=-0.9 for
C. This implies that the growth of L with increasing N is
very slow while C becomes significantly larger than that of
the random graph. Thus, we expect this model to exhibit the
small-world property even in the limit of N— . Figure 6
shows the ternary plots of L/Ly,C/Cy,S/N and the regime
that exhibits a small-world property. As Fig. 6 shows, a quite
large regime of parameters ¢, shows such a small-world
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FIG. 4. (Color online) Time-averaged value of u for different i
and N. Solid line shows Eq. (12). ¢=0,k=4.

property. In this regime, process 1 (homophilious rewiring) is
stronger than process 3 (voterlike opinion change) so that
the network will split into some isolated communities
whose nodes hold the same opinion if there is no heterophily
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FIG. 5. (Color online) Time evolution of normalized path length
L/Ly and clustering coefficient C/C, for several network sizes
N, assuming the scaling form N’x/xy=f(N) (x=L,C). a=-1.5,
b=-0.015 for L, and a=-1.5, b=-0.9 for C. G/N=0.05, k=4,
$=0.7, =0.15. Inset is the same plot with a=b=0 for both
L and C.
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(=0). This effect increases C. On the other hand, some
amount of heterophily in the model seems to make bridges
among such communities, which decreases L and increases
S. Thus, we expect that the network retains the small-world
property dynamically for these reasons.

v 1-p-y
(@)

v 1=p—y

S/N>0.9

v 1=¢—y

v 1-¢—y
(d)

FIG. 6. (Color online) Ternary plots of (a) L/Lg, (b) C/Cy, (c)

S/N, and (d) small-world regime where L/Ly<1.5, C/C,

>10, S/N>0.9. N=1600, k=4, G=0.05N, t=5X10°. Dashed
lines with labels are contours.
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V. CONCLUSION

We have investigated a simple coevolutionary network
model incorporating homophily and heterophily. If there is
no heterophily (¢=0), corresponding to the Holme and New-
man model, this model exhibits a nonequilibrium phase tran-
sition. We have derived the phase diagram and clarified that
the asymptotic behavior of this model abruptly changes from
a voterlike stochastic process to a simple relaxation process
in terms of the pairwise approximation. We have found that
the behavior of this model with heterophily (#>0) is quali-
tatively different from the case without heterophily (¢=0).
For >0, the network does not converge into one opinion.
Furthermore, we have also found that this model exhibits a
small-world property within a certain parameter regime in
the case GxN.

The pairwise approximation cannot predict the appear-
ance of the small-world property for >0, because this ap-
proach deals only with the population of nodes and links, not
topological properties. The derivation of L and C is not
straightforward for the present model. Although we may be
able to estimate the number of loops that consist of three
nodes to give an estimate of C, these equations are too com-
plicated for analytical studies. Further study of the analysis
of topological changes for ¢/> 0 will be the subject of future
work.
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APPENDIX A: CALCULATION INCORPORATING
HIGHER-ORDER STRUCTURES

The time evolution equations of the number of triplets can
be described as

A[AAA
[ dr ] = (Pp_A[AAB] + 2Py ,[ABA] - P,_5[AAAB, ]
+ Py [AABA,]- P, 5[A,AAB;]
+3Py L[B.AAALD(1 - &) + (PAHB[AAB]
J[AAT[AB
+Py [ [jg _]>¢>, (A1)
d
BB 2Py PaABAT- P, _i{ABAB)

+2Pg A[ABBA ]+ P,_5[A,AABy]

—3Pp_AlB.AAAT]}(1 = @) —=2(Pp_pa+ Ps_p)
X[ABA]¢, (A2)
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d[AAB]

d ={-(Pg_a+Ps_plAAB]+ Py ,[ABB]

+2P; A[BAB]+ P, s[AAAB,]+ Py [ABAB,]
— 2P, p[BAAB |- Pp_o[AABA ]
+2Py_A[B,AABr]-2P,_g[A,ABB1]}(1 - ¢)

[AB]
+ <2PA—>B[BAB] + PA—»BW —(Pg_s+Py_p)

X [AAB]) &, (A3)
where [WXYZ; ] is the number of in-line quadruplets whose
nodes are in the order W-X-Y-Z, and [W,XYZ;] the number
of three-pronged quadruplets centered at W. Equations for
[BBB],[BAB], and [ABB] are similarly derived as above.
We assume here that the network is a random graph so that
we take account of only trees, because a random graph in-
cludes few loops. We approximate the number of quadruplets
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using the numbers of triplets, links, and nodes; thus these
equations are closed. These equations have a fixed point at

4K (1-¢)*  4K(1-¢)

+—+1
U= 5 a0-97  2K(1-¢) (A4)
BN

This fixed point disappears for k= % within 0=u=1.

APPENDIX B: BOUNDARY OF PHASE
FOR GENERAL G

For G>2 and =0, using the same approach as in the
main text, we can also derive time evolution equations for
the numbers of various types of connected pairs and the
number of opinion holders as

WX _ S (b, x21+2P, [x2X]
ar  7ix

- Px AXXZ))(1 - ¢) + Px_/XZ]$]. (B1)

% = (= Py_y([XY]+2[YXY] - [XYY]) — Py_x([XY]+2[XYX] - [XXY])

+ 2 {(Pzx+ Pz y)XZY] = Px_AYXZ] - Py_AXYZ]})(1 = ¢) = (Px_y + Py_x)[XY]p, (B2)

7Z#X
|
d X] [XZ] ([xx1,[xY],[X])=(u",v*,N/G), which means that each
dr = ( S zwl+20z7] opinion is equilibrated with one another, where
Wz
. 2K(1-¢)+(G-1)N
)i, @ R (BY)
2y [XW] + 2[XX]
. 2K(1-¢)-N
where X,Y.,Z, and W take one of the G opinions and = T—d’) (B5)

X#Y. If we approximate triplets as product of independent
pairs such as [XYZ]=[XY][YZ]/[Y], we obtain a closed set
of equations. Although Egs. (B1)—(B3) are too complex to
use in deriving fixed points generally, one can still find that
these equations have a common fixed point at

Here we used N=2,[X] and K=24[XX]+ 22y, y[XY]. This
fixed point disappears when k< 1_;, corresponding to v*
<0 and uw*>K/G. Equations (B1) also have fixed points in
the subspace with [XY]=0 for every X #Y.
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